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Abstract. The general theory of deformations and eigenvectors of composite systems pre- 
sented in the preceding paper (I) is illustrated here by application to the phonon eigenvector 
of layered composite systems. Explicit expressions for these eigenvectors are derived for a 
simple model of several layered composite systems: semi-infinite solid, one slab, a double- 
layer slab and one adsorbed slab on a semi-infinite crystal. 

1. Introduction 

The study of phonons in composite materials is only beginning. However, if one considers 
a slab and a semi-infinite crystal as simple composite materials, one can foresee a little 
how the theoretical study of more complex composite materials can be tackled in the 
near future. The theoretical investigation of surface phonons (see, e.g., [l]) is done 
mostly by direct numerical diagonalisation of the slab dynamical matrix [2], by matching 
the eigenvectors at the surface [3] and by using response functions [4]. The first two 
methods also provide the frequencies of the surface phonons as well as their eigenvectors. 
The method using response functions provided in the past the frequencies of the surface 
phonons and not their eigenvectors [ 1,4] .  Knowledge of the eigenvectors is necessary if 
one wants to study the localisation of these vibrational modes. 

In this paper, we show how all the phonon eigenvectors can be calculated within the 
response function approach, for a surface of a semi-infinite crystal, a single slab, a 
double-layer slab and one adsorbed slab on a semi-infinite crystal. 

In § 2, we shall first recall the simple phonon model for which all these studies are 
done. The simplicity of this model enables us to make all calculations in closed form, so 
that any motivated reader can easily recalculate them and be able then to solve the 
eigenvalue problem for more sophisticated models, along the same lines. 
t Permanent address: Departement de Physique, FacultC des Sciences de la Nature, Universiti de Conakry, 
Guinea. 
$ Permanent address: Surface Physics Division, Physics Institute, A. Mickiewicz University, Matejki 48/49, 
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2. The phonon model 

The bulk phonon model used in this paper is the well known Montroll-Potts [5] model 
used for many studies of surface phonons [ l ]  and also more recently for the lattice 
dynamics of systems with two interfaces [6]. We shall therefore recall only its main 
features here. 

This model assumes an infinite crystal of type i to be a simple cubic lattice of atoms 
of mass m,. Let u(n) denote the threefold-degenerate component ofthe displacement of 
the atoms at lattice site x(n)  = ao(nlf l  + n 2 f 2  + n3 f3 ) ,  where a. is the lattice parameter 
and fl, f2 and f3 are unit vectors. The model assumes atomic interactions /3( with the six 
first nearest neighbours of each atom. The bulk phonon dispersion relation is 

w 2  = 2(P,/m,)[3 - cos(klao) - cos(k2ao) - cos(k3ao)] (1) 
where k is the propagation vector. 

resentation 
The corresponding bulk response function is [l, 61 within the ki = (kl,  k2)  rep- 

with 

and 

E ,  = 3 - cos(k,ao) - cos(k2ao) - (ml/2/3,)(w2 + iE). (3b) 

t ,  = exp(qJ (4) 

For what follows, it is also useful to define a new variable q, by 

and to note that t:3 represents a progressive plane wave inside the bulk band 
(-1 < E ,  < 1) and an exponentially decaying wave outside the bulk band (EL > 1 or 
5, < -1). This entity t r 3  is for the bulk lattice the phonon eigenvector corresponding to 
the eigenvalue w 2  given by equation (1). 

Let us now use this bulk phonon model to calculate eigenvectors in a few layered 
composite materials. The index i will enable us to distinguish between the different 
submaterials out of which each composite material is built. 

3. Phonon eigenvectors for some layered composite materials 

We use now the general theory presented in the preceding paper [7] to calculate a few 
phonon eigenvectors. More precisely, use will be made of equations (13a) or (16a) of 
[7] for the phonon model described above. Knowledge of the interface response operator 
A and of the bulk reference eigenvector is sufficient to calculate the eigenvector of the 
composite system. We shall therefore give only these entities for each system considered. 
Note that the interface response operator A defined by equation (sa) of [7] can be easily 
obtained for the present model from equations (9), (14)-(16) and (18) of [6]. The 



Eigenvectors of composite systems: 11 1249 

corresponding algebra is straightforward. We shall not expand on it and shall thus 
present the results directly. 

3.1. The semi-infinite crystal 

Consider a semi-infinite solid i = 2 (n3 s 0) with a (001) free surface at n3 = 0. Within 
this model and without modification of the surface force constants, there is no localised 
surface mode. However, the bulk eigenvectors experience a phase shift due to reflection 
at the surface. From the unnormalised bulk eigenvector given by 

U(n,)  = tz3 ( 5 )  

corresponding to the eigenvalues given by equation (1) and the surface response operator 
A,, given by equation (15) of [6] as 

A,2(0n;) = -tk-';/(t2 + 1) (6) 

it is straightforward, using equation (13a) of [7] to obtain the unnormalised eigenvector 
for this semi-infinite solid to be 

u(n3)  = cosh[qz(n3 - i)]. (7) 
Note that, inside the bulk band, q2 is purely imaginary. 

3.2. Theslab 

Consider a slab i = 1 (1 S n3 6 L )  with (001) free surfaces at n3 = 1 and n3 = L. Using 
the corresponding surface response operator 

A,,(n3n;) = [-l/(tl + 1)](6n31ty; + S n 3 L t f - n ; i 1 )  (8) 

given by equations (14) of [6], the surface values of the bulk eigenvector U(n3) = t43 and 
equation (16a) of [7], it is also very easy to obtain the slab unnormalised eigenvector 

u(n3)  = cosh[ql(n3 - i)] (9a) 
corresponding to the slab eigenvalues given by 

sinh(qlL) = 0. 

Note that the above expression is obtained from equation (15) of [7 ] .  The eigenvectors 
of a slab within this model have been given before [8]. We recall them here as an easy 
check for our formalism. 

3.3. The double-layer slab 

Consider a double-layer slab formed out of the above slab i = 1 (1 s n3 6 L )  bonded to 
another slab i = 2 ( L  + 1 S n3 S N )  by first-nearest-neighbour interactions PI between 
interface atoms. For this problem the interface space M is formed out of the four sites 
n3 = 1, L ,  L + 1 and N.  Using equations (9), (15), (16) and (18) of [6], it is also 
straightforward to obtain here the interface response operator A defined by equation 
(sa) of [7]. Let us give here its non-zero matrix elements; we use the notation A(MD)- 
this notation means that the A(n3n;) are such that n3 E M and nj E D ,  D being the 
whole space 1 6 n3 6 N .  
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For 1 s n; G L ,  

and, for L + 1 < n; G N ,  

1 

It is then easy to form the 4 x 4 matrix A ( M M )  = I ( M M )  + A ( M M ) .  From the zero 
of the determinant of A ( M M ) ,  one obtains the equation giving all the eigenvalues of this 
double-layer slab, namely 

cosh[qz(N - L + i)]/cosh[q2(N - L - &)I + /3I/P2 - 1 

= +(P:/PlB2){cosh[ql(L + i)l/cosh[q,(L - 411 + N P ,  - I>-'. (11) 

(120) 

Using then as the reference eigenvector 

(U(M)I = [ t l ,  tf-, 0,01 

or 

(U(M)I = ' [ O ,  0, ti+', ty] 

and equation (16a) of [ 7 ] ,  one obtains the unnormalised eigenvector of the double-layer 
slab. 

Vibrations of a double-layer slab have been studied before [9] for the same model. 
However, only numerical results for the eigenvalues were presented. The closed-form 
results (11) and (13) presented for the first time here can also be obtained by using as 
reference the two uncoupled slabs. This approach was used [lo] for electrons and 
magnons in double-layer and triple-layer slabs. The recurrent interface rescaling 
approach to the eigenvalue problem of finite layered composite systems [ll] also gives, 
when applied to phonons, the same results. 

3.4. The adsorbed slab on a semi-injinite substrate 

Consider now a slab i = 1 (1 < n3 < L )  adsorbed on a semi-infinite crystal i = 2 (n3  4 0). 
Here also the two different crystals are bound together by first-nearest-neightour inter- 
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actions PI between interface atoms. The interface space M is formed here of the three 
sites n3 = 0, 1 and L.  As above, it is easy to obtain the interface response operator A. 

For n;  S 0 ,  

1 + 1) + (PI/P2)[l/(ti - l)l>t:-"3 

- 111 

0 

and, for 1 S n; G L ,  

(14b) 1 (m 1 /m2 >(PI  / P  1 >[tl3 /(ti - 1>1 

AWD) = -{l/(tl + 1) + ( ~ ~ / m 1 / ( t ;  - 1)1>ti3 . 
- + - n ; + l  I 1 A t 1  + 1) 

From the zero of the determinant of the (3 x 3) matrix A ( M M )  = I (MM)  + A ( M M ) ,  
one obtains the equation giving the phonons localised within the slab and decaying 
exponentially within the semi-infinite solid, namely? 

2{1 - (PI/P2)[f2/(t2 - 1)1>sinh(q,L) + ( P I / P d  cosh[q1(L - W i n h ( l q 1 )  = 0 (15) 
with q1 # in .  

equation (16a) of [7], using as reference eigenvector 
The eigenvectors corresponding to these localised phonons are then obtained from 

(U(M)I = [I, 0,Ol (16a) 

(U(M)I = [O, t l ,  $1 (16b) 

(U(M)l = [O, tT1, t;"]. (16c) 

or 

or 

As explained in [7], all these different reference eigenvectors of the reference system 
formed out of the bulk truncated and independent slabs provide the same answer for 
the unnormalised eigenvectors corresponding to the localised modes given by equation 
(15), namely 

4 - 3  n3 S O  

1 s n3 s L. 
0 3 )  = W+2>(P2/Pl)[(t2 - l>/(t l  - 111 1 X [tf''/2/(1 - tfL)] cosh[ql(n' - L - i)] 

We also calculated the eigenvectors corresponding to eigenvalues lying inside the 
bulk band of the semi-infinite crystal. In that case, one has, for a given eigenvalue w2,  
several possible eigenvectors corresponding, respectively, to 

(i) a plane wave U(n3) = t 4 3  coming from n3 = --CO and giving rise to a reflected wave 
and a transmitted wave in the slab, 

(ii) a plane wave U(n3)  = t73 induced in the slab, scattered first by the free surface 
of the slab and then by the interface with the semi-infinite solid, 
f Equation (15) has already been given as equation (41) in [ 6 ] ,  but with a printer's error in the sign before the 
second term. 
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(iii) a plane wave U(n,) = t ; "3  induced in the slab, scattered first by the interface 

(iv) any linear superposition of the eigenvectors obtained for the three preceding 

We feel that it is not necessary to give here the analytic expressions of these last 

with the semi-infinite solid and then by the free surface of the slab and 

cases. 

eigenvectors, as any motivated reader will be able to obtain them easily. 

4. Conclusion 

This paper is mostly an illustration of the general and abstract theory given in the 
preceding paper [7]. Nevertheless, new results are presented here for phonon eigen- 
vectors in a double-layer slab and in a slab adsorbed on a semi-infinite crystal. The simple 
phonon model used in these studies enabled us to perform all the calculations in closed 
form. This provides also a pedagogical value to this work and will enable us to understand 
qualitatively the initial experimental studies of phonons in adsorbed slabs. However, 
this work can be recalculated along the same lines for most sophisticated models, 
although of course with the help of a computer. 

Finally let us recall that the phonon eigenvectors calculated here are isomorphic to 
the magnon eigenvectors within the Heisenberg model [8], used for the interpretation 
of spin-wave resonance spectra. Such experiments are also under way [12] for sandwich 
structures of an iron layer adsorbed on nickel. 
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